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the calculation of eddy viscosity for boundary layer flows with mass in-

jection and chemical reaction. Volume I contains the theoretical analysis

and a discussion of the results obtained to date. Volume II includes the

computer program and sample cases.

The concept and computer program can perform the calculations

of the eddy viscosity for any case provided the boundary layer edge

conditions and the wall temperature distribution are given. Primarily,

however, the program was adopted for problems occurring in.a regeneratively

or transpiration cooled rocket thrust chamber.

Volumes I and II have been distributed according to the attached

distribution lists.
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CALCULATION OF EDDY VISCOSITY IN A COMPRESSIBLE TURBULENT

BOUNDARY LAYER WITH MASS INJECTION AND CHEMICAL REACTION

Volume I



Introduction

This paper presents the results of recent efforts to calculate

the eddy viscosity and the effect of mass injection into the boundary

layer including chemical reactions.

Although the modified van Driest-Clauser eddy viscosity model

by Cebeci et al. provides good results for external air flow, the

adequacy of this model for nozzle flow with combustion products and

a strongly cooled wall has not yet been verified due to limited

experimental data. Even for nozzle air flow the modified van Driest-

Clauser eddy viscosity model does not show the experienced relaminari-

zation tendency in the nozzle convergent section and exhibits an

unrealistic decrease of eddy viscosity downstream of the throat toward

the nozzle exit.2

In order to include the effects of the past history of flow

and the strong temperature variation across the boundary layer due to

chemical reaction or wall cooling, the turbulent kinetic energy

equation has been introduced for the solution of the Reynolds stress

in this study. A kinetic energy approach was conducted for incom-

pressible flow by Rotta3 , Glushko, Bradshaw et al.5s , Donaldson6 ,

Maise and McDonald 7 , and Beckwith and Bushnell8 . Patankar and

Spalding9 calculated compressible turbulent boundary layer flow with

a similar method but could not attain satisfactory agreements of the

skin friction and the heat transfer results with experimental measure-
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ments.

In this analysis, the Reynolds stress and the turbulent kinetic

energy are related with the gradient of mean velocity according to

Prandtl and Wieghardtl . The turbulent kinetic energy equation,

derived from the Navier-Stokes equations, is simplified according

to Rotta3 1 . The constants in the reduced form of the turbulent

kinetic energy equation are obtained from iterations of numerical

calculations and comparisons of results with available experimental

data for incompressible flow with or without mass injection, assuming

the compressibility effects hidden in these constants to be negligible.

The profile of the eddy viscosity across boundary layers and boundary

layer thicknesses calculated for supersonic flow of M = 2.5 are in

good agreement with experimental data by Squire', . Calculations

are also performed for subsonic air flow with injection of pure nitrogen

or a mixture of 4% hydrogen mixed with nitrogen, and for the hydrogen-

oxygen combustion product flow in a nozzle with hydrogen injection. The

effects of wall cooling and heating are also investigated for the flow

without mass injection.

The solution method was based on the Crank-Nicolson implicit

finite difference technique14 and the chemical reaction was assumed

to be in local shifting equilibrium.

Basic Equations

The compressible turbulent boundary layer equations2 for steady

state and two-dimensional and axisymmetric flows are presented in a
-3-



curvilinear coordinate system, neglecting the transverse-curvature

effect. The derivation of equations is shown in Appendix A and B.

Continuity

ax (purJ) + pv + p' v r = (1)

Momentum

-- u + v + p'v u d u
ax ay dx ay y

Energy

pu ax T) y PT P)

n

+E 1 V T u +e% h (3)

PrT
i=l

Element

( _ / L LeT a1pu ~ + P + p~ ' m e +e (4
ax ay TY Pr rT

where j = 0 for two-dimensional flow and j = 1 for axisymmetric flow.

The eddy viscosity, E is defined as

E= - (pv)' u' / (au/ay). (5)

The flow is assumed to be calorically perfect and obeys the

equation of state,

pRT
P pM (6)

where the time mean of the correlation between fluctuating density and

temperature, p'T', is neglected because of its small order of magnitude

as stated by Harvey et al.'s
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Turbulent Kinetic Energy Equation

Considering the continuity and momentum equations for compressible

turbulent boundary layers, the system of turbulent fluctuation equations

is written2 in the cartesian tensor notation as

au Du a 1'u' ( ' u(' 
i k u

(puk)'u xk + (P uk)'uI axk + (uk+pu Xk xk

(3p ' u ' pk e u.' 3 x

=- + + p + i
\ xi  xj \ xi  xj

/ u'u' u' Bu'

ai 21 -J (7)
axk  xk  axk axk

Introducing the previous three equations in Eq. (7) for i= j = i,

2, and 3, and defining the turbulent kinetic energy as K = u' u' +

v' v' + w'w', the following turbulent kinetic energy equation is

obtained2 , using Rotta's assumptions, ," to model the turbulent diffusion

and dissipation terms.

K K .+ - I+apAKl/2
pu + +'v')y - 2 (pv)' u' v y y a

K P K3/ 2

- P 8 - Y (8)
A2  A

In Eq. (8) (, 8, and y are constants, and A is the dissipation length.

In order to relate the Reynolds stress, -(p v)' u', with the kinetic,

energy, K, the Prandtl-Wieghardt formula'0 is utilized
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- (p v)' u' = k A K/2 (9)ay(9)

The equations can be solved in closed form, when the previous

three constants, the constant, k, and the dissipation length,A , which

is a function of the distance from a wall, are known.

For the ideal (one component) gas, only the equations of continuity,

momentum, energy, turbulent kinetic energy, and state must be considered,

and terms including the species gradient can be deleted from Eq. (3). In

calculating air flow without chemically reactive mass injection the

Prandtl number is assumed to be constant, and the molecular viscosity is

considered to follow the Sutherland law:

1 = 2.27 x 10- 8 T1/2(l + 198.6/T)-1  
(10)

The turbulent Prandtl numberls calculated based on the formula by Cebeci:16

0.4 i - exp (-yt/At)
rT 0.44 [1 - exp (-yt Pr1 2 Bt)] (11)

At the wall, y = 0, Eq. (11) reduces to

Pr = 0.4 B t  -1/2
T 0.44 At r (12)

For a combustible gas mixture the molecular viscosity, p, is cal-

culated from Wilke's semi-empirical formula;17

ns

Si (1 + Xj/Xi)- (13)
i= 1  j=1

j#1

and the thermal conductivity is obtained according to Mason and Saxena,
- 6 -



n ns

1 (1+ 1.065 > P1 X/xYi) 1  (14)
i=l j=1

j=i

where the viscosity of each specie, pi, is taken from Svehla" as in

Reference 14. The laminar Prandtl number is internally obtained from

er 1 i i I. (15)

and the turbulent Prandtl number is calculated as in the ideal gas case.

To simplify the calculation the laminar and turbulent Lewis numbers are

assumed to be unity. The system of equations (1) through (8) is solved

including the locally shifting chemical equilibrium calculation20 to

relate element and species mass fraction, enthalpy, specific heat, and

temperature for a given pressure and assigned enthalpies, hio

The boundary conditions are:

at the wall, y = 0;

u (x, 0) = 0

P v + ' ' v' = (x)
w

T (x, 0) = T (x)
w

(Oa/y) = D -- - -m- P w Le
y=0 w mw Cml rw e

K (x, 0) = 0 (16)
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at the outer edge of boundary layer, y + o;

u (x, o) = Ue(x)

T (x, o) = T (x)
e

m ame

K (x, o) = 0 (17)

Solution Method

In reference to experiments by Bradshaw and Ferriss 21 for incompressible

flow, and assuming the compressibility effect on the dissipation length to be

negligible, the dissipation length, A, is modeled as

A / 6 = 0.205 (y/6)3 - 0.586 (y/6) + 0.431 (y/6) (18)

To avoid occasional negative results of the turbulent kinetic energy K

in the vicinity of the wall, the boundary layer is subdivided into a region

very close to the wall and the wake region since the turbulent dissipation

terms exceed the remaining terms in Eq. (8) due to the combination of

constants close to the wall. Considering the effect of the molecular

viscosity in Eq. (8) to be small, the following term can be neglected:

S K - K
ay ay A

The eddy viscosity for the wake region results obtained from Eqs. (5) and

(9) is:

- 8 -



60 = k iA K1/2 y (19)

Close to the wall the modified van Driest model' based upon the Prandtl

mixing length theory is applied, and the inner eddy viscosity yields:

r =  p 2  I (-20)

with the mixing length,

I =  0.40 y [1- exp (-y/A)] (21)

The van Driest "Damping factor, A," includes the effect of suction or

mass addition and pressure gradient as indicated by Cebeci.

The inner eddy viscosity, ei, is used adjacent to the wall until

the height at which o = C. is reached at each axial station. From0 1

that point to the boundary layer edge, the outer eddy viscosity

formulation is utilized.

The three remaining constants in the system of equations are

assigned the following values:

= 0.1/K

k = 0.6

y = 0.36

After relating a and k by the indicated formulation 2 the constant

values for k and Ywere obtained from numerical calculations, based

upon a trial and error iteration, which matched experimental data

-9-



by Muzzy22 for subsonic air flow without mass addition, especially

the measured eddy viscosity (Fig. 1). Calculation was initiated 150 cm

upstream of the measurement location to match the given velocity thickness

90 cm downstream of the computation start point which was considered

to be the virtual origin of the non-blowing turbulent boundary layer.

In Muzzy's experiment2 2 the large-scale disturbances were artifically

created by sandpaper upstream in the test section.

In order to assess the validity of the present concept,

calculations were performed for comparisons with Klebanoff's experi-

ments." He also used artifical thickening of the turbulent boundary

layer by covering the first 60 cm of a vertically mounted flat

plate with sandpaper. Comparison of the measured data and the

calculated results were made 315 cm downstream from the leading edge.

According to Klebanoff23 the turbulent boundary layer virtually

originates 430 cm upstream of the test station. Thus computation was

started at this virtual origin. The experimental free stream velocity

and momentum Reynolds number are Ue = 10.67m/sec, and Re = 6900,

respectively. The calculated Reynolds number is Re = 6960. The analytically

calculated eddy viscosities and their corresponding measured values2 3 are

presented in Fig. 2. The agreement with Klebanoff's data is satisfactory.

Since Muzzy's experiments 22 include uniform nitrogen gas injection

from a 60 cm long porous wall, calculations were conducted to obtain

the relation between the constant,y , and the non-dimensionalized

- 10 -



mass injection rate, F = m /eU e . As shown in Figs. 1 and 3,variation of

the constant y for a given mass injection rate provided good simulations

of measured values.

So far subsonic flow was considered. Verifying the assumption

that compressibility effects on the dissipation length and the con-

stants are negligible, analytical results were compared with data'2 , 13

for compressible flow of M = 2.5. As Figs. 4 and 5 indicate, the

calculated results are in good agreement with measured values by

Squire.'2  13 Differences between the calculated and measured eddy

viscosities non-dimensionalized with the boundary layer thickness

60.995 are within experimental tolerances (Fig. 4). In using the

displacement thickness 6* in the non-dimensionalized eddy viscosity

term, it becomes evident that the effect of mass injection disappears.

This, however, is only true for a constant wall temperature, which

was present in Squire's case (T = 2950K). Different constant wall

temperatures would indicate a pronounced effect, since the displace-

ment thickness is strongly affected by the wall temperature. In

Fig. 5,calculated boundary layer thicknesses are compared with

measured values by Squire for a case without mass injection. The

agreements are remarkably good. The curve shows the profile of the

turbulent kinetic energy calculated.

11



Effect of Chemical Reaction in the Subsonic Boundary

Layer Due to 4% Hydrogen Injection

To investigate the effect of combustion on the turbulent intensity,

the eddy viscosity,and other boundary layer profiles,hydrogen gas

diluted by nitrogen gas is uniformly injected from a porous wall into

the turbulent boundary layer, outside of which dry air is flowing with

the constant velocity of 1n 7-/--. I-r ...... .. .. wuularige and

MuzzyP and Jones and Isaacson 25 conducted such experiments, in which

the hydrogen gas injected is diluted to 4% by nitrogen gas. The severe

environment, high temperatures due to strong chemical reaction in the

boundary layer, prevented them to measure eddy viscosities. In their

experiments the virtual origin of turbulent boundary layer is far

upstream of the porous plate and depends on the mass injection rate.

In order to understand the effects of mass injection and

combustion on the boundary layer characteristics well and save

computation time, the present study anaylzes the flow without

mass injection and the case that the mass,mw = 0.0044g/(sec. cm2)

is evenly injected through a 76.2 cm long porous plate, with a

leading edge. Two modes of mass injection are considered the

injectants are 100% nitrogen gas and a mixture of 4% hydrogen and

96% nitrogen gases by weight. The free stream velocity, U , is
e

10.67m/sec, the pressure, P = 1 atm, and the temperature, T = 2950K.

Thus, the mass injection ratio if F = i /P U = 0.0035.
w ee
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The wall temperature distribution shown in Fig. 6, is almost the same

as measured by Wooldrige and Muzzy.2 For the chemical reaction calculation,

the following nine species are considered as combustion products: H, H2 ,

H20, 0, OH, 02, N, NO, and N2 .

Calculated results of boundary layer thicknesses are shown in

Fig. 7. At x = 60 cm the 100% nitrogen injection increases the velocity

thickness, 6 ,toapproximately 70% of the non-blowing velocity thickness,

while the combustion due to 4% hydrogen injection causes an additional

70% increase in velocity thickness compared with the case of 100%

nitrogen injection. Combustion significantly increases the velocity

thickness.

The momentum thicknesses, e, for the flows with and without

combustion differ but are in a close range, while the displacement

thickness, 6*, in the combusting flow is twice as thick as the corresponding

non-combustion value. The momentum thickness, e, is reduced due to

combustion.

The eddy viscosity profiles are shown in Fig. 8 at three axial

stations for combusting and non-combusting flows. The magnitudes of

eddy viscosity for both flows are almost the same. The distributions,

however, are different. The eddy viscosity profile without mass

injection at x = 76.2 cm illustrates that both the

magnitude and distribution are quite different from those of the other

two cases with mass injection. The peak values of eddy viscosity with

- 13 -



mass injection, with or without combustion,is twice as great as

the value without injection. If the eddy viscosity is shown in a

non-dimensional coordinate systemsuch as Figs. 9 and 10, the effect of

combustion on the eddy viscosity profile is almost concealed. Profiles

of temperature and velocity are shown in Fig. 11. In this graph, the

non-combusting flow has negative gradients of temperature and higher

velocity gradients at the wall than those of combusting flow. It is

evident that combustion in the boundary layer plays a similar role as

injection of mass at the wall, reducing the eddy viscosity close

to the wall (Figs. 9 and 10). The eddy viscosity close to the wall,

Fig. 10, islarge fornon-combusting case, but samlsIerfor combusting

flow, Fig. 9. This means temperature affects the eddy viscosity.

Comparing the temperature profiles in Fig. 11 with those measured by

Wooldrige and Muzzy 24 and Jones and Isaacson, 25one can deduce that the

shifting equilibrium assumption is valid for the combustion of hydrogen

with air. The flame zone shown by their experiments is very thin.

The difference between the velocity and density profiles in

a combusting layer and those for a non-combusting layer are illustrated

in Fig. 12. The secondderivative of velocity for the combusting

flow is positive below and around the flare sheet, while that

for the non-combusting flow is negative across the boundary layer.

This result coincides with the experimental velocity profile by Jones

and Isaacson.25 Downstream at the axial distance of x = 50.8 cm

the velocity profiles of the combusting flow tend to collapse

- 14 -



towards a single curve, but the density profiles are still non-similar.

The three velocity curves in Fig. 12 for the cases without injection

show that heating of the wall is equivalent to injecting mass at the

wall.

To understand the great difference of displacement thickness,

6*, between the combusting and non-combusting flows, mass flow profiles

are exhibited in Fig. 13. It is obvious that the mass flow profiles

differ significantly for two cases with injection due mainly to the

difference of density profiles (Fig. 12). Temperature

increase due to the combustion is a cause of thickening the displace-

ment thickness, 6*. The velocity distribution, as shown in Fig. 11,

is effected by both the distributions of eddy viscosity and density,

increasing the velocity thickness (Fig. 7). Thus the mass flow

profile has a dual effect of density, directly and indirectly.

The curve without mass injection, which is below the profile

with 100% nitrogen injection, shows that the displacement thickness increases

due to mass injection considering the definition of displacement

thickness. Effects of mass injection and combustion on boundary

layer characteristics are summarized at x = 76.2 cm in Table I.

In Figs. 8, 9, and 10, the magnitudes of eddy viscosity for

combusting and non-combusting flows are very close while the distributions

were different. This seems to indicate that combustion does not increase

the eddy viscosity. The turbulent kinetic energy, however, increases

significantly due to mass injection and combustion as shown in Fig. 14.
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This figure indicates that the mass injection increases the turbulent

intensity by 50% and combustion with 4% hydrogen injection enhances

it almost three times as much as the peak intensity without injection.

Thus, it may be concluded that in spite of the increase of turbulent

kinetic energy due to combustion the decrease of density prohibits the

increase of eddy viscosity. Considering Eq. (19), the eddy viscosity is

proportional to the density and the square root of the turbulent kinetic

energy. Thus, the effect of the density distribution is more

significant than the turbulent kinetic energy. Comparing curves

without mass injection in Fig. 14, we notice that the heated wall decreases

the turbulent kinetic energy close to the wall.

The friction profiles at x = 76.2 cm are compared for the

combusting and non-combusting flows in Fig. 15. The skin friction of

combusting flow is only 16% compared with non-combusting flow, because

the velocity gradient at the wall of combusting flow is much smaller

than that of non-combusting flow as shown in Fig. 11. The value of

skin friction, T , for flow without injection of course has the largest

value as shown in Fig. 15. In Table I and Fig. 12, the skin-friction

wT, is also reduced when the wall temperature increased.

It requires a long distance for the combusting flow to reach an

almost equilibrium profile. As shown in Fig. 12, velocity profiles were

almost equilibrium downstream of x = 50.8 cm, but density profiles

were still non-equilibrium. The distributions of element mass fractions

- 16 -



at the wall are shown in Fig. 16. The equilibrium condition at the

wall is attained around x = 50 cm. The small change downstream of

x = 50 cm is due to the wall temperature distribution.

The profiles of mixture ratio, F/O, are shown in Fig. 17, where

the mixture ratio is defined as the ratio of hydrogen element to the

sum of oxygen and nitrogen elements by weight. Fig. 18 shows the

species mass fraction profiles at x = 76.2 cm. The mass fractions of

H2, H 20, and N 2 at the wall are YH = 0.012, YH20 = 0.228, and
2

YN, = 0.760, respectively.

Fig. 19 shows the distributions of skin friction coefficient,

Cf, and skin friction, w' in flow direction. As known already from

the velocity profiles, the skin friction is reduced significantly due to

combustion in the boundary layer. Table I also indicates that the skin

friction with 100% N2 injection drops to about one-third of the value

of isothermal flow without injection. The skin friction of combusting

flow is less than 10% of the value of the isothermal case without in-

jection. Even without mass injection, the skin friction becomes smaller

for higher wall temperatures and increases for cooled walls. The

effects of cooler walls on velocity profiles are shown in Fig. 12, that is,

the velocity curve indicates that the cold wall has a similar effect on

the velocity profile as suction at the wall. We have already known that

a hot wall plays a similar role to mass injection. Referring to Fig. li

again and the velocity thickness shown in Table I, the turbulent kinetic

energy has a smaller value close to the wall for a hot wall compared

with a cold wall. The same can be said of eddy viscosities, Fig. 8,

- 17 -



where the eddy viscosity without injection and with a cold wall is

larger close to the wall than for a hot wall. Thus, the velocity gradient

at the cold wall is steaper than for the hot wall (Fig. 12). As mentioned

previously the velocity profile is affected through both the eddy viscosity

and density profile.

If the weight percentage of hydrogen in the gas mixture injected

increases to 8% or more using the same mass injection rate as before,

the boundary layer is blown off as a result of zero velocity gradient

at the wall at a certain distance from the leading edge.

Effect of Pure Hydrogen Injection into

the Supersonic Boundary Layer

The flow characteristics in nozzles with divergent half angles

of 100 and 150 and with uniform hydrogen injection at the wall were

investigated by Omori.2  The present study was performed on the boundary

layer flow in a rocket nozzle with the divergent half angle of 31.50

and the variable mass injection rate of pure hydrogen along the

nozzle contour.

The thrust chamber geometry, a nozzle built by Pratt & Whitney Aircraft, is
shown in Fig. 20. The chamber stagnation pressure, P , is 2.135 x 107N/n

(3097 Psia); the temperature, To = 36800 K, and the mixture ratio of

oxygen to hydrogen, O/F = 6.29. The experimental distributions of the

static pressure and the wall temperature with hydrogen injection are

shown along the nozzle axis in Fig. 21. As shown in Fig. 22, the
- 18 -



hydrogen injection rate is uneven in axial direction with the

highest rate around the nozzle throat. Using these distributions and

the chamber initial conditions outlined above, calculated results of

the boundary layer velocity, momentum, and displacement thicknesses

are illustrated in Figs. 23 and 24 for two cases with and without

injection, where the same wall temperature distribution in Fig. 21 was

assumed even in the case without injection.

For the flow without injection, the velocity boundary layer

thickness (Fig. 23) decreases in the nozzle convergent section due

to the reduction of eddy viscosity in flow direction for reasons

shown in Fig. 25. The velocity boundary layer thickness with hydrogen

injection in Fig. 23, however, has an irregular distribution because

of the uneven mass injection. In the nozzle divergent section the

velocity thickness without injection increases in flow direction

except for a small disturbance which is caused by the wall temperature

distribution. It is noted from Fig. 23 that the effects of hydrogen

injection and upstream history on the velocity boundary layer thickness

are significant. Fig. 24 indicates that both momentum and displacement

thicknesses are greatly affected by hydrogen injection. The reason for

the momentum thickness to become negative with hydrogen injection,

Fig. 22,is explained below. With injection, the temperature across

the boundary layer decreases due to the high heat capacity of hydrogen.

The hydrogen injected reacts with combustion products generating heat.

This heat energy is consumed to accelerate the flow with an over-
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shoot in the boundary layer as well as to increase the temperature

gradient over a certain distance from the wall (Figs. 26, 27, and 28).

This velocity overshoot shown in Figs. 26 and 28 is caused by the

combined effects of the favorable pressure gradient of the free-stream

and the chemical reaction due to hydrogen injection in the boundary

layer (Jones and Isaacson25 ). As Fig. 28 shows,the skin friction

coefficient increases with hydrogen injection and chemical reaction

in the flow with a favorable pressure gradient. The velocity gradient

at the wall in Figs. 26 and 28 is greater for the flow with injection

than without injection. Fig. 27 shows temperature profiles in the

subsonic region, and Fig. 29 in the supersonic region.

Profiles of the turbulent kinetic energy are shown in Fig. 30.

The turbulent kinetic energy without injection has a smaller value

than that with hydrogen injection except in the immediate vicinity

of the wall. It is evident from Figs. 29 and 30 that the turbulent

kinetic energy distribution is related to temperature. Fig. 5 showed

results of a nozzle air flow with wall temperatures at room condition and lower

free-stream temperature. The curves in Fig. 30 are the results of the

accelerated nozzle flow with the wall temperature of 10560 K and the

free-stream temperature 23760K.

Eddy viscosity profiles in the supersonic region are shown in

Fig. 31. Both the magnitude and the distribution of eddy viscosities

differ considerably between the flows with hydrogen injection and

without injection. The magnitude of eddy viscosity increases due to
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hydrogen injection. This result is contrary to a previous report by

this author,2 where the mass injection rate was even. The present

nozzle, however, has a peak injection rate of di = 2.2g/(cm2*sec)
w

around the throat (Fig. 22) and a larger nozzle half angle. This

uneven injection and the difference of nozzle geometry, which causes

the different favorable pressure gradient in flow direction, are

believed to increase the eddy viscosity. The eddy viscosity profile

with hydrogen injection has a minimum point in the middle of the boundary

layer, where the temperature increases sharply due to the chemical

reaction of injected hydrogen with combustion products.
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Conclusions

Coupling the turbulent kinetic energy equation with boundary layer

equations, the characteristics of compressible turbulent boundary layer

flows are solved for cases with or without mass injection and combustion.

The mechanism of turbulence has been considered in such a way that the

variation of turbulent production, diffusion, dissipation terms in the

turbulent kinetic energy equation were examined by changing the constants

until the results would simulate Muzzy's experimental data. After

obtaining the relations for each term in the turbulent kinetic energy

equation as mentioned above, this modeling of the turbulent kinetic

energy equation was verified, comparing the calculated results with sub-

sonic and supersonic experimental data by Klebanoff and Squire,

respectively.

To investigate the effect of combustion in subsonic flow, a

calculation was performed for air flow with mass injection of 4% hydrogen.

It was found that combustion significantly induces turbulence. The

magnitude of eddy viscosity in the combusting flow is almost the same

as that in non-combusting flow with the same mass injection rate of pure

nitrogen, while the distribution of eddy viscosity differs. This is

attributed to the difference in temperature profiles between combusting

and non-combusting flows. Combustion has a similar effect on the velocity

profile as if the mass injection rate is increased. That is, the

combusting flow has a smaller velocity gradient at the wall than the
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non-combusting flow with the same mass injection rate. As a result, the

skin friction of combusting flow is much smaller than that of non-

combusting flow, for a case without pressure gradient in flow direction.

Calculations were also conducted for combustion product flows in a

rocket thrust chamber with pure hydrogen injection from the wall simulating

transpiration cooling. The injected hydrogen decreases the temperature in

the boundary layer due to its high heat capacity. When the mass in-

jection rate is varying in axial direction,

the eddy viscosity becomes larger than for the case without injection

although nozzle geometry has an affect also. The distortion of eddy

viscosity occurs, when the temperature increases sharply due to the

chemical reaction of injected hydrogen with combustion products in the

boundary layer. The velocity gradient at the wall for the case with pure

hydrogen injection and chemical reaction is larger than that without mass

injection for a flow with favorable pressure gradient as prevalent in a

nozzle. Thus, the skin friction of the flow with hydrogen injection is

larger than that without injection, when a favorable pressure gradient

exists. This result is contrary to constant free stream flow conditions.

Therefore, the pressure gradient in flow direction exerts a significant

influence on the boundary layer characteristics.

The effects of wall temperature on the boundary characteristics were

also examined for a flow without wall mass injection. When the free

stream velocity is constant in flow direction and subsonic, heating of

the wall is equivalent to injecting mass at the wall, and cooling the wall

has the opposite effect.
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SYMBOLS

A van Driest's Damping factor

B Mass transfer number: 2F/Cf

Cf Skin friction coefficient

Cp Specific heat at constant pressure

D Diffusion coefficient

F Mass injection ratio, w /peUe

H Total enthalpy, H = + H' = h + u2/2

h Enthalpy, h = h + h' = h.Y.i

Thi Enthalpy of species i, hi h1 + hl Cp dT + hio

K Turbulent kinetic energy per unit density, K = u'u' + v'v' + w'w'

k Constant

Le Lewis number

B Prandtl mixing length

M Mean molecular weight

m Mass addition rate from the wallw

n Number of species

P, p Pressure

Pc Chamber stagnation pressure

Pr Prandtl number

w, Heat transfer rate into the wall

R Universal gas constant

rmi Mass ratio of element m in species i

rw Nozzle radius
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St Stanton number

T Temperature

u velocity in x direction

v Velocity in y direction

Xi Mole fraction of species i

x Distance along the contour

Y. Mass fraction of species i

y Normal distance from the wall

z Axial distance

aConstant

n
am Element mass fraction, am = rmi Yi

i=l

8 Constant

Y Constant

6.990 Velocity thickness, 6 = y at u/ue = 0.990

6.995 Velocity thickness, 6 = y at U/ue = 0.995

6* Displacement thickness, 6* = (1 - pu/PeUe)dy

E Eddy viscosity

0 Momentum thickness, = (pu/peue) (1 - U/U )dy

A Dissipation length 0

A Thermal conductivity

S Molecular viscosity

P Density

T Shear stress
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Subscripts

e Boundary layer edge

I Transpiration coolant

i Species

m Element

T Turbulent

w Wall

Superscripts

( )P Fluctuating term

( ) Time averaged quantity

Notations in Eq. (11) through Eq. (14) should be consulted with Ref. 14.
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Table I EFFECTS OF MASS INJECTION AND COMBUSTION
ON BOUNDARY LAYER CHARACTERISTICS AT x = 76.2 cm

cm j*cm cm Cf 2 N/m2 Kmax/Ue 2  Nse

o COLD WALL 1.234 0.131 0.191 0.00440 0.3103 0.0048 0.000661
" Tw = 150 OK

ISOTHERMAL
T 295K 1.387 0.271 0. 183 0.00386 0.2586 0.0051 0.000656

Tw = 295oK

HOT WALL 1.463 0.386 0. 166 0.00356 0. 2466 0.0054 0.000651
Tw = 556 oK

100 % N2
INJECTION 2.484 1.096 0.332 0,00143 0.1010 0.0075 0.001317
rlw= 0. 0044 g/cm.s

4% H2
INJECTION 4 120 2.712 0.287 0.00034 0.0233 0.0129 0. 001317

ilw=0. 0044 g/cm' s

COLD WALL: WALL HAS A CONSTANT TEMPERATURE OF 150 oK

ISOTHERMAL: WALL TEMPERATURE IS SAME AS MAIN FLOW TEMPERATURE

HOT WALL: WALL TEMPERATURE DISTRIBUTION IS AS SHOWN IN. Fig. 6



APPENDIX A

TURBULENT BOUNDARY LAYER EQUATIONS

1. Continuity Equation

The overall continuity equation for steady flow reads

S(p ui )
- 0 (A-1)a xi

in cartesian tensor notation.

In turbulent flows this equation must be true at any instant,

but also on the average. The instantaneous quantities are replaced by

the time average plus the fluctuating as follows:

P = p + p' (A-2)

and ui = ui + u' (A-3)

Substitute these expressions in Eq. (A-1), then

S[(P9 + p') (ui + ui')
= 0 (A-4)xi

Since

(P + P') (ui + ui') = p ui + p u i ' + P' u i + p' u i '  (A-5)

taking the time average of this equation and applying Reynolds' rule*

of averages, we obtain

(P + P') (ui + ui' = P ui + P ui + P' ui + p' ui'

= p ui + p ui, + p,' u + ' ui' (A-6)
i  ui

P ui + p7 uf

Therefore the continuity equation is written as

*Hughes, W. F., and Brighton, J. A., "Schaum's Outline of Theory andProblems of Fluid Dynamics," Schsum Publishing Co., 1964, p. 179.
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S (p u + p' u') 0 (A-7)

a x i

This equation is expressed for two-dimensional or axisymmetric flow in

a curvilinear coordinate system as follows, in which s is the wetted

length along the wall and y is measured normal to it*

as [(p u+ p' u') r ] + ; v + p' v']) r ] =0 (A-8)

where

j = 0 for two-dimensional planar flow

and j = 1 for axisymmetric flow.

Assuming

S(p' u' rJ) a (p' v' r J)
<< (A-9)

as 9y

Eq. (A-8) becomes

S(p u rJ) [(p v + p' v') rjw w 0 (A-10)
as y

The velocities, u and v, are those components along s and y, respectively.

2. Momentum Equation

The momentum equations are written in a cartesian notation as

follows** for steady flow:

aui DCr
P ui ixi i x i  (A-11)i ax (A-ll)

where the stress tensor, aij is

ij 1j 6ij + 6ij (A-12)

*Schlichting,H., "Boundary-Layer Theory", McGraw-Hill Book Co., 1968, p. 223.
**Landau, L.D., and Lifshitz, E. M., "Fluid Mechanics," Pergamon Press,

1959, p. 48.
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The quantities P and C are called the molecular (or dynamic) viscosity

and the bulk viscosity, and are functions of pressure and temperature.

Neglecting the bulk viscosity term in Eq. (A-11) according to the Shvab-

Zeldovich formulationt, we can write Eq. (A-11) in cartesian coordinates

as

ul aul ap l ul 2 ul u2
Pu l  x-- + p u 2  ax2  E-Xl Xl \-xl ax 3 Dx2 +

S 2 9 + (A-13)

and

p u2 Su2 = P + u + ul
a u x 2 2ax2 a x2 ax1 ax 3x2

(A-14)

+ a Du+2 Du2 2 /ul u u 2- 3 -- + +2
x2 L\x 2  x 2 / 3 x1  x

Because of the boundary layer assumptiontt Eqs. (A-13) and (A-14) reduce

to

pu - + pu 2  x + ( 2 )(A-15)1 P x1 2 x2 x1 + x2 Px2

and

x = 0 (A-16)ax2
multiplying ul by Eq. (A-1), we obtain

TWilliams, F. A., "Combustion Theory," Addison-Wesley Publishing Co.,
Inc., 1965, p. 9.

ttSchlichting, H., "Boundary-Layer Theory," McGraw-Hill Book Co., 1968,
p. 223.
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a (p ul) + a (p u 2 )
uI  + uI  - 0 (A-17)

ax i  a x 2

Adding Eqs. (A-15) and (A-17) gives

a (P Ul l1) + (p ul u2) p + ap aUl+ a- ax (A-18)a X1  a x2 x x 2 ax2  -

Substituting the following relations into the above equation,

p = p + p'

ui = ui + ui ' (A-19)

P = p + P'

and taking the time averages, we obtain

a (p + p') (u( u )  )+u (u2+u2 )
ax a 2

a (p+p') a a (I + q)

a 1 + x2 x
2  (A-20)

According to the Reynolds rule of averages,

(p + P') (ul + Ul') (u + ul') ( + P') (ulul + 2 ul ' l + l' U)

= ul u + 2 p u' I + P ul u'

(A-21)

+ p' i1 I1 + 2p' u 1 + P' u ul

SPulu1 + p5u + 27P1 u + p'u1uI
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(P P') (+ ~ 2 +u) = ( + p)( + u'-u ++ VuU2)12 12 U

p ulu 2 + + P u1 U2 + P u'u2

(A-22)

+ p'lU 2 + p u' 'u2 + p'u u 2

= Pulu2+ uu'2 + pu ul + p'ulu2 + p'ul'u'2

P + P' = p 
(A-23)

and

Ul + Ul = l1 (A-24)

Thus Eq. (A-20) reduces to

(p u u + P u '+ 2p' u ' u + p' u 'u ')
11 11 1 1 1 1

Sx

a (pulu + pulu' + pu + pulu2 + p' u' u+ 1U2 12+ P'u2u 1 2 12
Sx

2

(A-25)a

xx x2 x2 

Substituting Eq. (A-7) into the above equation, then

(p + u) 1+ ( + ' u2)
ax 2 ax,

S2 xx
2

P aul \l a (p ul'ul" + P'ul'Ul+ P'Ul'Ul)

x1  x2  ax2/ x1
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S(p q' u2' + p' u u2 + p'u1' u2 )

a x2  (A-26)

Since

P ul' ui + p' u1 ' u1 + P'ul' ul' = (Pul)' ul (A-27)

and

p u I u2 ' + P'Ul'U2 + P'u' u2 (pu2 ) ' u (A-28)

Eq. (A-26) is written in a cleaner form as

(P u l + P' ul') + (P u2 + p'u2 ) a l

axI  2

(A-29)

a ax2 . a2 - (pu2)1 (pl) u1

This equation is expressed in a curvilinear coordinate system for two-

dimensional or axisymmetric flow,* when the transverse-curvature effect

can be neglected, as

(Pu + p' u') +s + (v + P )y

ap a a a5 +  -- } (v)' u' - - (pu)' u' (A-30)
as y ay as

Assuming

Su' < < 'v' (A-31)

and

a (pu) u < < 3 py (A-32)
as a

*Schlichting, H., "Boundary-Layer Theory," McGraw-Hill Book Co., 1968,
p. 223.
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we finally obtain the momen um equation in s- direction.

Say+ v+ ds ay (pv) 'u

(A-33)

The y- direction momentum equation (A-16) yields

p + p' = constant (A-34)

across the boundary layer at each station.

3. Energy Equation

The general energy equation.*,**for steady state is written

for two-dimensional or axisymmetric flow in cartesian tensor coordinates

as

al H aH = H 1 1u
x 1  ax2  8x2 Pr @x2  Pr 3x2

11I n aYil (A-35)+ Pr (Le -1) E hi 'Yi
i=l -x2

where

2

H = h+
2

n

h = hi=l hiYi

T
hi = / C dT + h.T Pi i (A-36)

*Hughes, W.F., and Brighton, J.A., "Schaum's Outline of Theory andProblems of Fluid Dynamics," Schaum Publishing Co., p 196
**Lees, L., "Convective Heat Transfer with Mass Addition and
Chemical Reactions," 3rd AGARD, 1950, p457.
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Pr P I i p/

=- n
P = Cp Yi

i=1 Pi

Le = PD-p/;

9 (T) (A-36)

f= x (T)

Adding Eq. (A-1) multiplied by the total enthalpy, H, and Eq. (A-35),

then we obtain

a(pul H) (Pu2H) - f ul

x2x2 r Ux2 pa1 1x 2

n @Yi
+ -(Le-1) hi ]  (A-37)

Pr i= x2

Substitute the following relations

uj = uj + uj

p = * + p'

H = H + H'

Y = Yi + Yi

hi = hi + hi'

into Eq. (A-37), and take the time average, then
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a[(P + p')(ul + ul')(H + H')] I(P + P')(u2'+ u2')(H + H')
3 xl 3 x 2

[ aR + H') aul + u l  )

= ax2 Pr a x 2  + (1- (ul + ul') a x 2

IL n -- Yi+ Yi')
+ P (Le -1) E (hi + hi)r i=1 3x2

(A-39)

The left-hand side of the above equation is simplified using the

turbulent continuity equation (A-7) as

[(p + P')(uj + ul')(H + H' ) [1(p + p')(u2 + u2')(H + H')]

xl x2

(P Ul H + P' Ul H + P ul ' H' + P' H' ul + P' Ul' H')

3 xl

3(p u2 H + p' u2' H + p u2 ' H' + p Hv u +P'u2q H')+ 2 2 2 2 2

a x2

= (P Ul + P' ul') + (p u2 + p' u2 ')

a(p ul' H' + p' H' ul + p' Ul' H') (p u2' H'+ p'H' u2 +p'u2 'H')+' +
3 xl 3 x2

(A-40)
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where

p ul'H' + p'H' U1 + p' ul'H' = (pul)'H'

P u 2 'H' + p4H' u2 + p' u 2 'H' = (Pu2)'H' (A-41)

Assuming

a[(pul)' H']] (pu 2)' H'
(A-42)Sxl 8 x2

and

p' ul' << P ul (A-43)

Eq. (A-39) is simplified to

aH DH
Pl ul x + (u 2 + p' u 2 ') 3x2

' 3H Du 1_ (u'u')
- (pu )'H'} + p(1-l- u +

-x2 Pr aX 2  Pr ax2 2 DR2

n Yi "Yi'

+r (Le) hi x + (h i  (A-44)
(A-44)

Since
2

U 1l
H = h+

2

- 2
(ul + ul')

h + h' +

= + 2 + h' + uul + 2

H + H' (A-45)
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Thus

H' = h' + ul u1 + Ul (A-46)

The fluctuating term, (pu2 )', is expressed as

(Pu2)' = - u 2 - ( u2 )

= (p + P')(u 2 + u2 ') - (7 + P')(u2 + u2 ")

= p ui + p' u2 + p u2 + p u 2 ' u2 - p u2 - p' u 2

= p'u2 + p u2
r + P' u 2 ' - P? u2 ' (A-47)

Therefore

'H v_ U

-(u2)'H = -(p'u + pu2 ' + p'u2 ' - p' u2 ')(h' + Ulul '  )

=-Ph, u2 - U Pul'ul' u2u2 + P'ul' u1  2 + 2 + p u2'h'

S  p ul'ul'u2'+ P ul ul'u2 2 + p' u2' h' + Pvulu 2' ul

+ pululu 2 ' P 'u2 Ul'ul

2 2 )(A-48)

Neglecting the terms which include three or four correlations, we

simplify Eq. (A-48) as

-(pu2)'H' = - (p'h' u2 + p'ul' Ul u2 + p u2 'h' + p ul ul ' u2')

(A-49)
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The fluctuating term of static enthalpy, h', is expressed as

- n U
h' = h - h = hiYi - E hiYi

i=1 i=l

n n
" Z (hi+hi')(Y iYi')- (hi+hi')(Yi+ Yi')

n
1 i1(hiYi + hiYi' + hi'Yi + hi'Yi')

n

n

i=1

(A-50)

Substitute the above equation into Eq. (A-49), and neglect third

correlation terms, then

n

-(Pu 2 )'H' - { u2(P'Yi ' hi + P'hi'Yi) + p(hi u2 Yi' + u2 'hi' Ji)}

- (p'ul ' u1 u2 + p l u1 ' u2
1)

n
=- E { (P'hi' u2 + Pu 2 'h) Yi + (P'Yi u2 + p u2'Yi')h}

i=1

- ul ( P'ul' u2 + P ul'u 2 ') (A-51)
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where

p'hi ' u2 + p u2 vhi' = P 2 )'hi' - p'u2 'hi ' (A-52)

P'Yi' u2 + P u2 'yi' = (Pu2)'Yi - p'u 2 1Yi' (A-53)

p'ul' u2 + p u1 'u2' = (Pu2)'ul' - P'Ul'u 2 ' (A-54)

Eq. (A-51) is rewritten as

n

-(pU2)'H' =- i [(u u2)'hi'- P'u2 'hi' ] Yi + [(Pu 2 )'Yi'

- P'u2'Yi' ] hi } - u [ (Pu2)'ul' - P'ul'u 2 ' ] (A-55)

Let us define the turbulent thermal conductivity, T, and

diffusivity, DT , as

i [(pu2)'hi' - p'u2'hi' I Yi T ax2 (A-56)

_- (A-57)
- [ (pu2)'Yi' - p'u2'Yi' i = P DT @x2

and assume

(pu2)ul
' >> > p'ul u 2' (A 158)

2 2C. u aul 1 (ul'1ul1 (A-59)

3x2 ax2 2 3x2

and

x2 x2 > 2 a(hi 2 (A-60)
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then, Eq. (A-44) becomes

(p ul + p' ul') + (P u2 + ' u2') a
axl ax2

H aT n yi

T +p D 1 (hi3 + ) - u (pu2 )'ul'
ax2  Pr aX2  ax2  il X2

n

+ (1 l ) ul2! + (Le-1) Z (hi )] (A-61)
Pr 2  Pr i=l 3x2

In order to replace the temperature, T, in the above equation to the

static enthalpy, h and hi, and the species mass fraction Y., consider

the definition of the averaged specific heat, C .
P

n n @hjCp = E CPii I= (-- Yi
i=l i=1

n a(hiYi) aYi
= .[- hi  ]i=1 aT

ah n aYi
- 6hiaT i 1 hia"  (A-62)

Thus

aT = ah n ai (A-63)
Cp ax ax 2  - 1=hi x 2

Taking the time mean of the above equation considering Eq. (A-60),

then

aT -1 ah n - aYi
ax 2 - i1= h i  x2 )  (A-64)
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Now the eddy viscosity,E , the turbulent Lewis and Prandtl numbers,

LeT and PrT, are defined as follows:

S = -(pu 2)'uI' aX (A-65)

L = Cp
eT = (A-66)

and

PrT (A-67)

Considering Eqs. (A-64)through (A-67), Eq. (A-61) is written in a

curvilinear coordinate system as

- H pvI H - ___) H+H
P u - + (pv + pTv) a+

as ay y Pr Pr

[(- ) + (- )] u + [(Le-) + 4LeT1)] 1 iPr u -eT-)] y
Pr PrT ~y r e 1  -rT i=l

(A-68)

where the assumption below was made.

- 3H - BH (A-69)
S'u' s < <  'vay

4. Element Equation

Since there is no generation nor disappearance of atoms

in the system considered, the continuity conservation equation of

each atom, m, is written as

div (prmm) = 0 (A-70)
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where

Pm = Pem (A-71)

Um = Um,dif + U (A-72)

m : Velocity of element m

Uldif : Diffusion velocity of element m

11 : Mean velocity

Thus

div [pam (om,dif + )] = 0 (A-73)

This equation is rewritten as

(pu grad) am + div (p am m,dif) +am div(pl) = 0 (A-74)

Considering the overall continuity equation, Eq. (A-1), and

Fick's Law

Pum,dif = - (PD grad) am (A-75)

Eq. (A-74) becomes

(po grad)am  = div [(PD grad)am ] (A-76)

For two-dimensional or axisymmetric flow, this equation is expressed

in a curvilinear coordinate with the boundary layer assumption.

P u . bm  + p v a m  = (pD- ) (A-77)
Bs By By ay
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Multiply dm to Eq. (A-1), then

a(Pu) _____

Cm a s + m aay = 0

Add the above two equations, and we obtain

3(pucm ) + (apv m ) (pD Da )
as ay a y (A-79)

Substituting Eqs. (A-2) and (A-3), and

amm +9 m (A-80)

into Eq. (A-79), Eq. (A-79) becomes

al[ (-+p')(+u')(a +am') aC ) v [ p+ (-+v') m+an)
as ay

- [(p+p')D (oam') (A-81)

Taking the time average of this equation yields

- -

pu + (+ P v+p'v')

(pD ) - (AL8)
ay ay By (A8)

where the following left hand side terms have been omitted in

deriving Eq. (A-82) because of their smallnesses compared with the

remaining terms.
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p'u' D << p'v' a
as ay (A-83)

and

3[(pu)'%'] a[(pv)'%']

as ay (A-84)
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APPENDIX B

TURBULENT KINETIC ENERGY EQUATION

The momentum equation .for compressible fluid flow reads

a(u iui') a (u u i )
(P+ ') at + (p+) (uk+Uk) )

(ppP' +) a(ik+ Tik') (B-l)
nxi axk

where

tau Tik = Tik + Tik'

- k 21 6k 3*+ i
91x 3i3k axi (B-2)

molecular viscosity bulk viscosity

The continuity equation is

a(9+p') +a(OO')(uk+uk') = (B-3)
aT axk

thus

a(p+p') a(Puk+ Puk' + P'uk + P'uk')+ = 0 (B-4)at ax k

Subtract from Eq. (B-4) its time averaged equation, that is,

ap a(uk+ p'u'
t 3- k -- 0 (B-5)at akk

Onk



and we obtain

2e' a(puk' + p'u,+ P'uk' - P'Uk')
St + xk = 0 (B-6)

Multiplying ui' by the above equation (B-6), and adding this and

Eq. (B-1), we obtain

- ui aui' aui a ui' ,p'
at t at at + i at

+ (p .ukp uk' + P' uk + p k') i +

axk

+ ui' (p uk' + p' uk + P' uk' - p' uk')

Dxk (B-7)

- (P + p') a (Tik -Tik')

axi  ax k

Subtract from this Eq. (B-7) the time average equation, then

- aui laui a(p'ui'-p'ui') aiStui Pu u-u) + (p uk'+P'uk+p'uk' - p'uk')

+ (P uk + P uk' +p'uk + p' uk'). _ (P uk' +p' uk + p' uk') ui
Xk axk

+ a(P uk' + p' uk + P' Uk' - p' uk') a(puk' + P' Uk + P'uk' - P'uk')
ui axk - ui axk

ap' aTik'
axi k (B-8)
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Write the same equation for the velocity component uj , Multiply

Eq. (B-8) by uj' and the equation for uj' by ui', and add these two

equations obtained, then

a uauj + .' (u al + +~('u u aa U'(p'u') a(Pu1 )

P at at + uit u- ' t - ui at

+ uj'(P Uk' + p' -uk + p uk' - p' uk ')
axk

+ u-i(p uk' + 0' uk + n 2,U- 3- u.. k axk

+ (P uk+ puk' +p'uk+ p'u-k') axk + 2ui'uj' apuk'+ P'uk+P'Uk'-p'uk')

Va+2' au

-UV i(Puk'+puk+pk'u u 9(puk'+p kP'ukp '-p'uk')
3xk [ui j axk

= - uj [ - + uipv Pik' ,aTik'

axi axj u axk ax k  (B-9)

After time averaging Eq. (B-9), the result is written as

- a(uu' ) au a (p'u'u ,)
at uj -t + p ui at at

+ (p uj uk  + P' uj uk + p' uj' Uk )
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+ (p ui'ukv + p' Uil Uk + p' Ui Uk,) I u

a(ui'u a(jiu 1 )

3 Xk

' -[' + ui+' + [uj'ik'. + ui'3Tik'
L xi  axj J L xk  xkJ

(B-10)

where

' .) uk')
k Iuk (uuJ + 2 ui ' uj' axk

u u (puk') +(p ui'uuk) (B-
= uit u ~x k  axk

Diflusion of the correlation ui'u'

by the turbulent motion itself

This term is dropped for the
incompressible flow, since

8(uk + uk') = 0 , (A) (uk + uk') =0 (B)

axk Dxk

(A) - (B =k 0
axk
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Substitute Eq. (B-6) into Eq. (B-11), we obtain

S[uk ! xk( + 2 ui' (Puk

~ (puk + p'uk' - Puk') + p1 a (Pui'uj'uk')

3xk at 3xk

(B-12)

Thus Eq. (B-10) is rewritten as follows:

- 3(ui'uj) aui auj a(pvUiujvI)
P at + pluj t + Pvui t +t

aui uauj a(pui'uj'uk)
+ (puk)' uj u  i  _ (puk)'ui +

+ (p uk + P (uiuj + p uk  (ui'u)

+ ui'uj, 8(P'uk + p~uk' - P'uk') uiv UJ 3p

3 xk  t - ui  u tp

x B(pxui) i a ) + [ , U" uu

The general pressure The tendency-
diffusion terms towards isotropy

term .(B-13)
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Since

________ D(Ptu-) a(p uk 1)

(P'Uk + P'uk-) I -L + ui' 2I

3xk axk

Eq. (B-13) is written f or steady flow as,

(Pk ,+ (Puj()' u 4-..+ (2IiT
ki XkXk 3xk

a(P'ukui'ui 1) 3(p luis U1'uk ) +(iu' I- I__ _ Puk I

+ axk + 3xk +puk axk -iu x

aXj +j +X +u'j

(B-15)

where

axk ± xk + xk ;xk

and

apXk I+pP'k)(iu 'Uk ;i~j

-Uivjl j axk P k 3xk

(B-17)
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Thus Eq. (B-15) is

u i + u. + [(puk) 'ui'uj'] 8[(pvuk') (ui'uj')](puk )vu. 5xk  (pUk)9 u i(Puk) axk (pU i 8xk  axk  8xk

3 (u uj )
+ (puk + (pUk) u

aXk

(p'uj) (puui) u ui, Tik' TJk1
8xi  + x 9 ax , + u xk  + u x,a _ a . J

(B-18)

Let us assume

[(Puk)Oui u (p Puk')(uiuj')] 8( uiujuk)
axk axk 8xk

(B-19)

then we have a system of turbulent fluctuation equation in a simple

form as

(pu Qu ui + (puk)9U i uS ui uk + (p uk +P'uk )  Lui'u=
(Xk ~xk axk axk

( a g ) ( Fui) Bu Bui DTi' DTjk'

axi + P ai ax + kxk

(B-20)
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As Eq. (B-2) showed

Tik = Tik + Tik'

\axk kxi 3 6x ik

thus neglecting the bulk viscosity term, we have

k aui' u' 2 au'Tik'= P\ axk + a 6ik I
axk axi a3 x

(B-21)

Let us assume

uj' p 2 ik 39 u xk ui- L[j1 - 2 jk 0
xk xi 3 x xk xi 3 ax

(B-22)

then the last term on the left hand side of Eq. (B-20) becomes

u 3Tik + i = U a Iuax" ,- l ax, (u
8xk axk /- xk Dxk

S ( aui'uj') 2 ui' uj'
S axk axk axk

ui'u ' aui' _u_

a auijl 2 uil' aujl
axk ak xk a .xk

(B-23)
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Therefore Eq. (B-20) is simplified to

[Turbulent Fluctuation Equations]

a, u (p ui' uj' u k'

(puk)'uj y + (puk)'ui + xk + (pUk$O uki UjDxk 3xk (u kP'uk axk

P'uj ap'ui uj V uv 8 ;uiuau' au 'T+P + j 211xi T4 -k F a xk

(B-24)

Add three equations above for i=j= 1, 2, and 3 considering the

boundary layer assumption, then we obtain the following turbulent

kinetic energy equation:

[Turbulent Kinetic Energy Equation]

- - aK . ..
p u + (p v + pV) = - 2(pv)' u

+i - C - (PKo+2P)v' - 2 Bu'u vy V aw' a'

a y Ty + Ty y + y ay ,

(B-25)

where Ko  = u'u' + vv'V + wowV

and K = u'uV + v v + WVw
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